PLC адаптер от Ростелекома: функционал и схема подключения. Технологии сетей

27.12.2023 Windows Server

Разберем, прежде всего, что представляет собой современная силовая сеть, обеспечивающая доставку электроэнергии потребителям (рис. 3.1). Имеется линия электропередачи ЛЭП 110 кВ, которая подходит к понижающей подстанции. Далее напряжение 110 кВ трансформируется в напряжение 10 кВ, затем на подстанции  в трехфазное напряжение 220 В. Это фазное напряжение, и таких фаз три  Ф1, Ф2, Ф3, линейное напряжение  380 В.

По готовой проводке можно легко организовать связь в любом сечении сети (см. рис. 3.1). В энергосистемах России это и делается, хотя неудовлетворительное состояние сети и алюминиевые провода весьма ограничивают этот процесс. Однако поскольку мы говорим о «последней миле», нас будет интересовать технология в относительно низковольтовой части, а именно в трехфазных бытовых сетях напряжением 220 В.

Суть понятна – не надо «тянуть» сеть, а цели следующие: низкоскоростная передача данных (управление, учет); высокоскоростная передача данных (Интернет); телефония; домашняя автоматика, сервис «умный дом».

По этой технологии связи идет вторжение в чужую сеть, и в России существует ГОСТ Р51317.3.8-99  «Передача сигналов по низковольтовым электрическим сетям», регламентирующий такое вторжение (стандартом определена полоса частот в диапазоне 3 – 525 кГц) .

В соответствии с ГОСТ Р51317.3.8-99 связь по силовой сети может быть организована в следующих диапазонах частот:

1) 3 – 9 кГц – может использоваться по согласованию с потребителями электрической энергии;

2) 9 – 95 кГц – запрещен для использования;

3) более 95 кГц – разрешен без ограничений (любой вид кодировки, модуляции).

Наиболее современной и распространенной является технология Powerline, ориентированная на цифровую обработку микропроцессором (DSP). В настоящее время с помощью этой технологии возможна передача информации со скоростью до 85 Мбит/с на расстояние 200 м.

Особенности технологии PLC:

связь возможна, если все терминалы подключены к одной фазе (см. рис. 3.1);

значительные затухания в линии;

существенные помехи кондуктивного характера (кондуктивные помехи представляют собой токи, текущие по проводящим конструкциям и по земле);

нестабильность линии связи.

Все это накладывает существенные ограничения на использование описанной технологии. Рассмотрим методы, применяемые в настоящее время.

Проблемы помехоустойчивости решаются при кодировании и модуляции. Заметим, что такие системы строятся по адаптивному принципу. В начале передачи устанавливается пробный режим «Вкл./выкл.» и идет мониторинг линии (прежде всего по затуханию). В зависимости от состояния меняются частоты и скорость работы, т. е. идет адаптированная передача.

Импульсные помехи, возникшие при коммутациях, могут быть столь короткими (менее 1 мкс), что система может не успеть адаптироваться. Для этого применяют избыточные коды  сверточные (см. разд. 1), коды Рида – Соломона с декодированием по алгоритму Витерби.

Процедуры декодирования подробно рассматриваются в теории кодирования , мы же остановимся на сути декодирования по алгоритму Витерби (алгоритм получил название декодирования по максиму правдоподобия). Допустим, имеется множество передаваемых кодовых комбинаций U i и одна из них передается. При декодировании известны возможные кодовые комбинации R j . В декодере производится вычисление условных вероятностей P(R j /U i), естественно, все они разные. Из множества этих вероятностей выбирается максимальная и принимается соответствующее ей решение  R j .

Декодирование кода Хемминга предполагает регулярное правило решения, а алгоритм Витерби – статис-тическое.

Модуляция. Высокоскоростной поток разбивается на несколько низкоскоростных, по каждому из которых передаются биты исходного слова. Эти низкоскоростные потоки подаются на частотный модулятор с несколькими несущими (поднесущими) (рис. 3.2).

При обычной FDM (частотной модуляции) между несущими вводится большой частотный интервал для лучшего разделения сигналов в приемнике, но использование спектра неэффективно, так как сигнал в целом занимает большую полосу.

Предположим, сигнал низкоскоростного потока (бит)  прямоугольный простейший импульс. По теореме о переносе спектра его спектр переносится в область поднесущей в виде двух боковых полос. И так будет у каждой поднесущей (рис. 3.3). Весь этот набор формирует полосу частот сигнала.

ВPLC-технологии применяют ортогональное частотное разделение, т. е. спектры при ортогональных несущих (рис. 3.4). Эта модуляция называется OFDM. Нетрудно заметить, что несущие частоты выбраны при значении других спектров, равных нулю. Ортогональность спектров позволила уменьшить полосу частот всего сигнала (см. рис. 3.4).

0 5 10 15 20 25 30 35 40 рад/с 50

Рис. 3.3. Спектр сигнала FDM

0 3 6 9 12 15 18 21 24 рад/с 30

Рис. 3.4. Спектр сигнала при OFDM

На этом процесс модуляции не заканчивается. Каждая несущая модулируется по какому-либо закону. Это может быть, например, квадратурная амплитудная модуляция (КАМ), фазовая относительная модуляция (ОФМ) и др., но в любом случае это должна быть многопозиционная система сигналов, позволяющая повысить пропускную способность канала.

При многопозиционной ОФМ-модуляции в каждой поднесущей кодируется сразу два бита (дибит) по следующему принципу: Δφ = 0, биты 00; Δφ = = 90, биты 01; Δφ = 180, биты 10; Δφ = 270, биты 11.

Четыре поднесущие, с помощью каждой из которых реализуется ОФМ-2, приведены в табл. 3.1.

Таблица 3.1

Кодирование поднесущих

Поднесущая,

После кодирования все поднесущие собираются в один пакет, несущий информацию (рис. 3.5). Таким образом передается последовательность 00100111.

В итоге сборки сформирован сигнал DQPSK – дифференциальной квадратурной фазовой манипуляции.

ВтехнологииPowerline используется 84 поднесущих с шагом в 0,2 МГц в полосе частот 4 – 21 МГц (полоса разрешена стандартом), и по каждой поднесущей передается два бита.

Вернемся к адаптации системы к переменным условиям среды. Затухание линии не постоянно, так как это бытовая сеть энергоснабжения, во время тестирования может быть обнаружено большое затухание на частотах некоторых поднесущих. В технологии предусмотрен специальный метод решения этой проблемы – динамическое включение и выключение передачи сигналов на пораженных поднесущих (рис. 3.6). Естественно, что скорость передачи при этом меняется.

Благодаря данному методу теоретическая скорость технологии Powerline может достигать 100 Мбит/с.

Обработка сигнала OFDM производится сигнальным микропроцессором, а формирование линейного сигнала – специальным модемом, для которого разработаны микросхемы. Например, на основе микросхемы К1446ХК1 разработан трансивер для клиентского модема со следующими параметрами: скорость  до 200 Мбит/с, модуляция OFDM с 1530 поднесущими (компания TelLink).

Бытовая сеть электропитания служит общей средой передачи для нескольких терминалов, и в одно время на связь могут выходить несколько устройств. Для предотвращения конфликтов и столкновения трафика необходимо придерживаться протокола доступа к среде. В данной технологии принят известный протокол Ethernet (CSMA/CD) с некоторыми добавлениями приоритета – пакеты голоса и видео передаются с максимальным приоритетом, так как для этих данных задержка недопустима.

ТехнологияPowerline не единственная в этой области. Есть технология стандарта Х.10, которая применяется при компьютеризации жилой квартиры («умный дом») . Суть этой технологии проста. Передача сигнала осуществляется на частоте 50 Гц. В момент времени перехода синусоиды через ноль вводится временное окно, через которое и происходит передача (рис. 3.7). В окно помещается радиоимпульс частотой 120 кГц, а помехи создаются «кусочком» вырезанной синусоиды . Скорость работы невелика – до 50 бит/с, но этого достаточно для управления бытовыми приборами.

Примерный состав сети, построенной на основе PLC-технологии, показан на рис. 3.8.

4. Атмосферные оптические линии

Атмосферная оптическая линия – это линия с открытым оптическим каналом через атмосферу (рис. 4.1). На рис. 4.1 приняты следующие обозначения: ФД  фотодетектор; мультиплексор  цифровое устройство, объединяющее стандартные цифровые потоки Е1; демультиплексор выполняет обратную операцию.

Поток Е1 состоит из 30 цифровых каналов, по которым информация поступает к терминалам. Так что можно считать, что система участвует в решении проблемы «последней мили».

Можно назвать следующие преимущества оптического канала:

как и в любом оптическом канале, большая пропускная способность;

отсутствие помех электромагнитного характера;

информационная безопасность. Оптический луч сфокусирован в узкий пучок и злоумышленнику невозможно «включиться» в него;

возможность быстрого развертывания системы, что особенно важно в условиях плотной городской застройки;

не требуется получения разрешения у органов надзора на использование рабочих частот.

Существенный недостаток атмосферного канала – зависимость связи от состояния атмосферы. Именно по этой причине система может перекрыть только незначительное расстояние – до 3 км. Что же представляет собой атмосферный канал? Атмосфера состоит из атомов различных веществ, и они влияют на ее прозрачность в оптическом диапазоне. Прозрачность зависит от массы воздуха, от содержания водяного пара и пыли. Затухание определяет длина волны излучения. Атмосфера прозрачна в диапазоне от 0,3 до 2 мкм. На участке видимого спектра от 0,6935 до 0,6943 мкм имеется несколько микроокон прозрачности .

На среду передачи влияют фон, естественная освещенность окружающей среды, ослабление, турбулентность, хаотические изменения скорости, температуры, давления атмосферы, что приводит к случайным замираниям сигнала.

Наиболее известны в настоящее время технологии FSO, LaserLink. Остановимся на их особенностях.

Излучатели. Работают в диапазоне 0,75 – 0,9 мкм. В качестве излучателей применяют как полупроводниковые лазеры, так и светодиоды. Отметим следующие особенности излучателей:

применяется автоматическая установка угла излучения (диаграмма направленности) в зависимости от длины трассы. Чем длиннее трасса, тем уже диаграмма, и на приемник попадает более сконцентрированная мощность. Для реализации установки используются два лазера с двумя объективами (антеннами). Один лазер имеет большой угол излучения, другой  узкий. Переключение лазеров идет автоматически;

при узком луче излучения имеется автоматическая система юстировки, точного совпадения луча с приемной антенной. Иначе принимаемый луч может потеряться;

скорость передачи зависит от затухания и меняется автоматически. При большом затухании сигнала скорость падает и наоборот;

в некоторых технических решениях приемопередающего модуля зависимость от прозрачности атмосферы исключается переходом на другую длину волны в другом окне прозрачности (резервный канал).

Приемник. Используются фотодиоды со структурой PIN (структура типа P-I-N-полупроводника) и лавинные фотодиоды (рис. 4.2). Такие структуры имеют повышенный коэффициент чувствительности, малоинерционные.

Специфика названных фотодиодов следующая. В P-I-N-полупроводнике имеется один слой чистого полупроводника I с хорошей оптической прозрачностью. Оптическая волна проникает на значительную глубину, и возбуждение электронов идет в большом объеме. В лавинном фотодиоде идут лавинные процессы размножения носителей тока. Указанные процессы способствуют увеличению чувствительности приемника.

Приемник и излучатель объединены в приемопередающий модуль (ППМ), в котором находится и кодек (рис. 4.3). Апертура  это способность оптического объектива собирать свет, обычно она характеризуется угловыми размерами. Двух- и трехапертурные системы позволяют решить перечисленные выше задачи, а именно:

переход на резервную длину волны в случае большого затухания на основной;

изменение диаграммы направленности в зависимости от расстояния меж-ду точками приема и передачи;

возможность отслеживать положение оптической оси атмосферной линии и корректировать ее. Это особенно важно при работе в условиях города, так как вибрации зданий, ветровые нагрузки и другие причины могут привести к потере связи.

Интересно решение приема сигналов в технологии FSO. В передатчике излучаются два когерентных, пространственно разнесенных луча с одинаковой амплитудой. Один луч опорный, а другой несет информацию, т. е. модулируется по фазе. Конечно, оба луча одинаково поражаются вредными воздействиями и возмущениями среды. Эти лучи попадают на фотоприемник, который выполнен в виде матрицы из фотодиодов (рис. 4.4). Пришедшие лучи создают на поверхности матрицы интерференционную картину. В некоторых точках матрицы произойдет усиление суммарной электромагнитной волны, а в других  ослабление, т. е. образуются темные и светлые места.

Соответственно поведут себя и сигналы, снятые с фотодиодов. При смене фазы в информационном луче на 180 положение темных и светлых областей поменяется, поменяются и сигналы. Матрица имеет большую площадь, и поэтому проблем с вводом излучения в приемник нет.

У данного метода есть еще одна особенность. Известны два метода приема оптических сигналов – прямого преобразования и гетеродинный (термин пришел из радиотехники). Прямой метод прост в реализации: на фотодиод падает луч и снимается напряжение, обратное для P-N-перехода. Этот метод нашел применение в кабельной оптике.

Второй метод, гетеродинный, более сложен и требует наличия маломощного источника в самом приемнике. Итак, на вход приемника пришел информационный сигнал, он складывается с сигналом гетеродина. Оптические сигналы  это электромагнитные волны. Запишем их так:  напряженность электрического поля информационной волны и
 напряженность поля гетеродина. Попав на площадку матрицы ФД, сигналы складываются: . Фотодиод выдает ток (или напряжение), пропорциональный падающей мощности (квадрату напряженности поля):

Если раскрыть произведение косинусов, то в приведенном выражении можно выделить члены, содержащие информацию о фазе информационного луча φ. Их будет несколько, и в том числе
, который значительно увеличит уровень полезного сигнала. Напомним, что в атмосферном канале (см. рис. 4.1) присутствует фон. По сути это помеха для связи, и за счет члена
, входящего в приведенное выше выражение, возрастает сигнал, увеличивается соотношение «сигнал/помеха». Таким образом, в какой-то мере решается проблема помехоустойчивости.

Кодирование информации идет в канальном кодере Рида – Соломона.

Цифровые потоки Е1 объединяются по плезиохронному принципуPDH. Для объединения используется код HDB3. Это трехуровневый код, в котором исключаются длинные последовательности нулей. Эта мера необходима для сохранения синхронизации системы. Принцип образования такого кода и его отличие от кода AMI показаны на рис. 4.5. В коде AMI длинные последовательности нулей фактически означают потерю сигнала. Выделить из этого кода синхронизирующую последовательность невозможно.

Если в коде HDB3 более четырех нулей, в информационную последовательность вставляется служебный сигнал (V-сигнал) и синхронизация сохраняется.

На основании приведенного материала можно сделать следующие выводы:

1)в приемнике используются свойства интерференционной картины на матричной мишени фотодиодов, т. е. применяется гетеродинный способ приема. В качестве гетеродина используется сигнал второго лазера;

2) для передачи используется трехпозиционный код HDB3, допускающий синхронизацию системы;

3) для организации тракта передачи применяются светодиоды, полупроводниковые лазеры и средства корректировки;

4) в основе принимающей матрицы используются специальные фотодиоды.

Технология PLC (Power Line Communication) — современная телекоммуникационная технология, базирующаяся на использовании силовых электросетей для высокоскоростного информационного обмена. Эксперименты по передаче данных по электросети велись достаточно давно, но низкая скорость передачи и слабая помехозащищенность были наиболее узким местом данной технологии. Но прогресс не стоит на месте, и появление более мощных DSP-процессоров (цифровые сигнальные процессоры) дало возможность использовать более сложные способы модуляции сигнала, такие как OFDM модуляция (Orthogonal Frequency Division Multiplexing), что позволило значительно продвинуться вперед в реализации технологии PLC.

Следует учесть, что в своем сравнительно небольшом отрезке исторического развития, применение данной технологии столкнулось с некоторыми трудностями, о которых я расскажу немного позже.

Возможности технологии PLC

Подключение к глобальной сети Интернет широко развивающийся бизнес, интернет-провайдеры предоставляют услуги связи практически повсеместно в офисе и дома. На сегодняшний день построено и эксплуатируется большое число высокоскоростных магистральных сетей, однако, подключение к ним конечных пользователей по-прежнему остается серьезной, часто бюрократической проблемой. Сегодня большинство конечных подключений осуществляется посредством прокладки кабеля от высокоскоростной линии до квартиры или офиса потребителя. Пожалуй, это наиболее дешевое решение, но в силу ряда причин прокладка кабеля крайне затруднительна или даже невозможна. Часто это вызвано разграничением зон влияния между интернет-провайдерами. В определенных территориальных областях конечный клиент вынужден, для осуществления подключения к сети Интернет, обращаться к провайдеру – который является непосредственным владельцем узла связи, территориально близко располагающегося по отношению к узлу клиента.

Не все провайдеры способны осуществить проброс оптико-волоконного кабеля через определенные объекты до конечного клиента, не имея на то разрешения, а стандартный UTP-кабель поддерживает стабильное соединение при длине не более 100 метров. Таким образом, в некоторых областях провайдерам просто невыгодно организовывать высокоскоростной доступ к Интернету, из-за стратегической неокупаемости затрат на специалистов и оборудование.

Так почему же не использовать уже имеющуюся в каждом здании систему силовых электрических коммуникаций. При этом любая электрическая розетка в здании может стать точкой выхода в глобальную сеть Интернет. Причем при грамотном планировании такого вида подключения, все, что требуется от потребителя – лишь наличие PowerLine модема (сетевого адаптера), соответствующим образом настроенного для связи с аналогичным устройством, установленным, как правило, в электрощитовой здания и подключенным к высокоскоростному каналу Интернет.

Такая технология как PLC может быть использована при создании локальной сети в небольших офисах, где основными требованиями к сети являются простота реализации, мобильность устройств и легкая расширяемость. При этом как вся офисная сеть, так и отдельные ее сегменты могут быть построены с помощью PowerLine адаптеров. Очень часто встречается ситуация, когда необходимо включить в уже существующую сеть удаленный компьютер или сетевой принтер, расположенный в другой комнате или даже в другом конце здания. С помощью PowerLine адаптеров эту проблему можно решить за 15 минут. Подобные решения возможны и при других типах соединения, однако PLC не призвана быть их абсолютной заменой, но является мощной альтернативой. Имея некоторые ограничения, данная система ничем не отличается от любых других типов интернет соединения.

Проблемы развития технологии PLC

Именно для успешного разрешения актуальных проблем связи была и создана технология PLC. Но тут следует оговориться! Подобные решения – не панацея, ведь всем известна популярность сетей WI-FI, по которым можно легко осуществлять беспроводную передачу данных, а также 3G и 4G.

На территории западных государств данная технология широко используется локальными провайдерами и простыми пользователями, также PLC применяется некоторыми интернет-провайдерами в РФ. Вообще, для западных систем связи эта технология представлялась и представляется очень перспективной. Тамошние электросети регулярно модернизируются, а электрификация затронула даже самые отдаленные территории и области.

Но беспроводные технологии более привлекательны как для западного, так и отечественного потребителя. Беспроводные сети и способы шифрования передаваемого сигнала первого поколения были не достаточно надежны для применения в ответственных отраслях. Оставляла желать лучшего и пропускная способность беспроводных каналов связи, скорость подобных соединений. В процессе своего развития и совершенствования беспроводные решения взяли вверх над PLC и даже над стандартным кабельным соединением. Появились новые технологические стандарты WI-FI сетей. Повсеместно стали использоваться устройства – репитеры, позволяющие расширить зону охвата беспроводного сигнала. Надо заметить, что во многих странах мира под гражданские системы беспроводной связи, под нужды рядовых граждан выделены самые выигрышные частоты. В наших с вами отечественных реалиях такие частоты закреплены за военными и правительственными учреждениями.

Однако, какими бы оптимистичными ни были результаты работы экспериментальных PLC-сетей за рубежом, в нашей стране эта технология столкнулась с рядом трудностей. Наша электрическая проводка сделана в основном из алюминия, а не из меди, которая используется в большинстве стран мира. Алюминиевые провода обладают худшей электропроводностью, что приводит к более быстрому затуханию сигнала.

Другая проблема заключалась в том, что у нас до сих пор не решены основные вопросы нормативно-правового регулирования использования таких технологий. Впрочем, последняя проблема актуальна и для Запада.

Считалось, что эта технология, а вернее совместимые устройства заполонят в огромных долях рынок HI-TECH оборудования. Открывались новые возможности при реализации идей умного дома, где вся бытовая электроника завязана в единую информационную сеть с возможностью централизованного управления. Электрическая сеть – идеальная среда передачи управляющих сигналов между бытовыми приборами, работающими в сети 110/220В. Но и среди решений умного дома взял верх именно беспроводной способ обмена короткими управляющими сигналами, не особо требовательными к качеству соединения и пропускной способности.

Все эти факторы сдерживали и сдерживают повсеместное развитие . Тем не менее, PLC успешно применяется на деле некоторыми интернет-провайдерами в новых зданиях, с современным электрооборудованием, а также энтузиастами в условиях квартиры или загородного дома. На рынке существует немалое количество приборов гибридного типа, совмещающих в себе и PowerLine, и WI-FI технологии одновременно!

Проблемы развития и особенности технологии PLC was last modified: Март 3rd, 2016 by Admin

Тем, кто пропустил первую часть или хочет вспомнить первую часть .

Для тех кто понимает, что такое автомат и УЗО, для чего они необходимы, что и от чего защищают – переходите к разделу .

Часть вторая

Посмотрим какая взаимосвязь между энергетикой и конечным ИТ-оборудованием, будем разбираться в вопросе- в каких случаях перебоев в сети питания операционная система гарантированно должна работать без сбоев.


Вопросы переключения на резервный источник питания

Электроснабжение информационного оборудования организовывается с резервированием. Рассмотрим организацию электроснабжения в части ЩБП-БРП-БП (щит бесперебойного питания-блок распределения питания- блок питания). Типы резервирования бывают следующих типов:

  1. Резервирование кабелей к стойке, оборудованию, с использованием отдельных блоков распределения питания, БРП (рисунок 1)
  2. Резервирование шин питания в щите электроснабжения, с использованием отдельных блоков распределения питания, БРП (рисунок 2)
Резервирование на уровне блоков питания непосредственно в сервере, коммутаторе, ИТ-устройстве (рис.3)
Резервирование при помощи стоечного переключателя нагрузки, стоечного АВР (СПН, он же ATS) (рис.4)

Для переключения между основным и резервным вводом могут использоваться:

  • в сфере информационных систем: шкафы АВР/STS (Static Transfer Swith) для систем большой мощности, для перехода на питание от резервного ИБП в момент работы полноценной системы 2N или комбинаций систем N+1;
  • в сфере систем электроснабжения различного вида схемы АВР (на контакторах, на контроллерах);
  • на уровне серверной стойки: автоматические быстродействующие стоечные АВР\ATS (Automatic Transfer Switсh);
  • на уровне конкретного информационного оборудование: дублированные блоки питания.
Как мы для IT-оборудования, «перерыв в электроснабжении недопустим». А что скрывается под этой фразой? Что такое «перерыв» в питании информационного оборудования? Сейчас разберемся на живом примере.

Заказчик внедряет локальную серверную вместе с IT-инфраструктурой двух этажей под офис фирмы. На этапе обсуждения системы электропитания у него возникает желание поставить все информационное оборудование с одним блоком питания (БП), а второй слот под БП серверов оставить свободным, и на всю стойку смонтировать единый ATS стоечного исполнения. (рис.4, схема).

Внешний вид тыльной стороны сервера с дублированными блоками питания

Как Заказчик аргументировал свое желание :

  • Экономия средств ($500-800 с каждого устройства в стойке)
  • Можно поставить два простейших БРП и применить их уже для распределения питания после ATS
  • Абсолютно аналогичный уровень надежности системы, по сравнению с классическим способом распределения
Мы взяли тайм-аут, подробно исследовали желание Заказчика с различных точек зрения, надежности сервисов в целом в гарантийный и послегарантийный срок, а также:
  • стоимости (экономии) капитальных затрат при внедрении (CAPEX)
  • стоимости затрат на амортизацию, содержание ЗИП, трудозатрат персонала клиента (OPEX)
  • сравнения алгоритмов работы и времени переключения на резервную линию в обоих вариантах, проверка на «единые точки отказа»
  • уровня рисков зависания и/или перезагрузки операционных систем информационного оборудования, падения информационных сервисов, которые на них работают.
И вот что выяснилось:

Некоторые выдержки из статьи

В последние годы государственные стандарты в области измерений параметров электрической энергии, относящихся к КЭ, активно развивались и были неоднократно переработаны


"
Важным изменением стала замена ГОСТ 13109-97 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» на ГОСТ 32144-2013. Данные стандарты определяют различную номенклатуру показателей качества электроэнергии.


А вот насколько быстродействующим? Как определить то время в миллисекундах, за которое сервис (и сервер) заказчика не упадет, а операционная система не уйдет в «critical error»?

Существует стандарт CBEMA (Computer and Business Equipment Manufacturers Association), который после некоторых корректировок ныне известен как «кривые ITIC» (Information Technology Industry Council), а ее варианты включены в стандарты IEEE 446 ANSI. Согласно этим нормативам, электронные схемы блоков питания должны сохранять работоспособность в течение 20 мс (или 0,02 секунды, то есть период).


Те самые кривые ITIC

Согласно требованиям к блокам питания серверных и компьютерных систем Server System Infrastructure можем сказать, что параметр блока питания Tvout_holdup во время провала напряжения питающей сети обеспечивает работу информационного оборудования минимум 21 мсек. То есть, полный период сети – это гарантированное время нормальной работы сервера или коммутатора. Параметр Tpwok_holdup определен минимально 20мсек.

некоторые подробности по параметрам SSI можно посмотреть тут

Справка: Hold-up time (время удержания) - это временной промежуток, в течение которого блок питания может поддерживать выходные напряжения в определенных пределах после пропадания на его входе питающего напряжения. В большинстве компьютерных блоков питания Hold-up time характеризует еще и через какой промежуток времени power good сигнал (PWR_OK) скажет системе, что напряжения, вырабатываемые блоком питания, нестабильны (для компьютерных блоков питания этот параметр обычно более 16 мс).

Вот одна из таблиц из документа

А это диаграмма (time-line) с регламентируемыми алгоритмами работы БП


Теперь посмотрим, какое время переключения заявляет APC, например, для стоечного переключателя нагрузки марки AP7721 . Видим, что тут у нас обычно 8-12 мс, но 18 мс – это максимальное время переключения.

Можем сделать вывод, что время переключения на резервный ввод для стоечного переключателя нагрузки соответствует спецификации работы блока питания серверного оборудования. Получается, что сбоев в работе информационного оборудования не будет.

Сводная таблица таймингов элементов системы


А что у нас с экономической составляющей и какой из вариантов более выгоден и отказоустойчив?

Предположим, у нас в стойке имеются три небольших сервера, в которые можно поставить по два блока питания и три устройства с недублированными блоками питания. Все критически важны и отказ любого из устройств выведет в отказ всю систему заказчика в целом. Стоечный переключатель нагрузки нам в любом случае понадобится. Это порядка 18 тыс. рублей.

Заказчик заявляет, что PDU (БРП) им не нужны, значит, в бюджете будет лишь стоимость ATS – те же 18 тыс. рублей. В качестве замены блокам распределения питания (PDU) Заказчик предлагает использовать распределение питания «на борту» стоечного переключателя нагрузки. Также Заказчик планирует купить сервера с двумя слотами под блоки питания, но в комплектации с одним БП ради экономии.

Классический вариант предполагает комплект из 2-х PDU – около 32 000 рублей, 3 дополнительных блока питания в серверы по $500 каждый за 84 тыс. рублей итого. ATS за те же 18 тыс. рублей. Сложив все, мы понимаем, что классическое решение обойдется Заказчику примерно в 134 тыс. рублей.

Вроде бы действительно, Заказчик прав, деньги совершенно другие. Но давайте посмотрим с точки зрения отказоустойчивости и удобства обслуживания обоих вариантов:
Вариант заказчика: Единая точка отказа – стоечный переключатель нагрузки. Если с ним что-то случится, то мы теряем всю стойку целиком. Значит, надо иметь ЗИП прямо на площадке, что прибавляет к смете 18 000 рублей. Блоки питания в серверах стоят по одному, они тоже являются точками отказа. Значит, желательно иметь хотя бы один, а лучше все три блока питания в резерве на площадке. Примем, что нужны три БП в ЗИП – это еще плюс 36 тыс. рублей. Нужно проверять мощность, которую может коммутировать стоечный ATS. Cейчас мы исходим из того, что 3 кВт или 16А нам хватит на все оборудование стойки. Если нам понадобится ATS на 32А (7кВт), то это будет уже значительно дороже (более 100 тыс. руб). То есть бюджет варианта Заказчика при детальном рассмотрении надежности вырастает до 160 тыс. рублей . При этом в случае ЧП несмотря на то, что запасные части будут на площадке понадобится down-time для замены устройства.

Единая точка отказа (SPOF, Single Point Of Failure) - узел, линия связи или объект системы доступности данных, отказ которого может вывести из строя всю систему, или вызвать недоступность данных
Вариант Открытых Технологий : По , но при необходимости добавляется ATS для мелкого сетевого оборудования с единственным блоком питания.

Точка отказа – тот самый ATS. Если с ним что-то случится, то мы теряем всю стойку целиком. Согласны с тем, что надо иметь ЗИП прямо на площадке. Но в нашем случае, если отказывает только ATS, то это может повлиять лишь на работу коммутаторов и вспомогательного оборудования. Сами серверы спокойно продолжат работу. Блоки питания в ЗИП не нужны. Так как при выходе из строя одного из дублированных блоков питания сервер продолжит работу на оставшемся, и, скорее всего, дождется нового блока питания от вендора, вне зависимости от удаленности площадки.

Интерпретация термина SPOF применительно к ИТ-системам

Единая точка отказа (SPOF, Single Point Of Failure) – узел, устройство или точка схемы, отказ которого может вывести из строя всю систему, вызвать недоступность данных и сервисов. Рассматривается при разработке и проектировании любых критически важных систем. Полное отсутствие единых точек отказа ведет к значительному увеличению капитальных затрат при внедрении, поэтому критичность работы той или иной системы, сервиса определяется на этапе проектирования исходя из бюджета проекта, а также пожеланий и требований Заказчика. Мы всегда находим вариант идеального решения для каждого Заказчика, определяя несколько вариантов реализации проекта, и предлагая их Заказчику. В результате на этапе сдачи проекта заказчик получает именно то решение, которое он хотел видеть по соотношению цена/качество/надежность.


Таким образом, подключать все оборудование стойки на единый ATS можно, но не рационально, так как в этом случае получаем единую точку отказа по питанию. Закупка серверов с дублированными блоками питания предпочтительна в любом случае, так как отказоустойчивость на уровне информационного оборудования увеличивается в разы.

Стоечный переключатель нагрузки обеспечивает корректное и почти мгновенное переключение на резервный ввод, информационное оборудование даже не почувствует этого, программные продукты и операционные системы продолжат корректно работать. Стоечные блоки распределения питания в любом случае нужны и экономить на них не надо. Видимая экономия на капитальных затратах по распределению питания может обернуться нерешаемыми проблемами при эксплуатации, например, необходимости «гасить» всю стойку только для того, чтобы переместить ATS в другой юнит или провести ревизию стоечного переключателя нагрузки. В любом случае для дублированных блоков питания должен быть ЗИП, а он не всегда возможен или имеется.

Внешний вид съемного блока питания сервера:

Применение стоечного АВР имеет свои особенности

Например, мощность такого АВР ограничена, и переключать он может комплекс сравнительно слабых с точки зрения потребляемой мощности нагрузок. Есть вопросы к количеству выходных разъемов питания. Например, вышеупомянутый ATS AP7721 оснащен по входу разъемами типа С14, что означает максимальную мощность переключения 2,5 кВт. На большую мощность нагрузки существует 2U модель AP7724 , который по входу комплектуется разъемом на 32 А, то есть максимальная мощность оборудования может быть до 7кВт. А это значит, что типовую стойку с оборудованием можно подключить на этот АВР полностью. Однако цена подобного решения будет более 100 тыс. рублей.


Работа информационного оборудования с двумя блоками питания была хорошо описана в статье Вадима Синицкого @dimskiy . Как видим, есть свои достоинства и недостатки. И наличие резервных блоков питания для информационного оборудования в любом случае необходимо, особенно если объект находится вне зоны быстрой поставки блока питания от вендора. Кроме того, хотим заметить, что онлайн калькуляторы расчета мощности новых серверов от вендоров могут применяться лишь как ориентир для системных администраторов, персонала Заказчика.

Реальные возможности подключения нового мощного сервера к существующей стойке должны оцениваться с учетом изначального проекта электроснабжения, текущего состояния и нагрузки электросети стойки, серверной, ИБП, генератора…. С точки зрения подключения в стойке также стоит учитывать:

  • текущие возможности PDU, типа свободных разъемов в них
  • номиналов автоматов в щитах и сечения и фазность кабельной линии к стойке.
Отдельного внимания заслуживает надежность работы системы электроснабжения серверной, если она построена по системе, изображенной на (с двумя системами шин), наличие нового мощного сервера может в случае ремонтных работ привести к перегрузке всей системы электроснабжения, снизить время автономной работы , заставить ИБП перейти на байпас по перегрузке и прочее…

А как у вас построена система распределения в стойке?
Каков ресурс БП для ИТ-оборудования и алгоритм их программного резервирования?
Какие вы предпочитаете БРП использовать: базовые, с мониторингом? насколько полезна в практике функция «управляемый БРП/PDU» и помогла ли она вам когда либо?

Только зарегистрированные пользователи могут участвовать в опросе. , пожалуйста.

Идея осуществлять передачу данных по электрической сети появилась несколько десятков лет назад. Еще в 30-х годах прошлого века в России и Германии проводились эксперименты по использованию силовых линий для передачи информации. Однако до конца 90-х годов технология находила весьма ограниченное применение. В основном она использовалась для оснащения высоковольтных линий электропередачи ВЧ-каналами связи для передачи управляющей информации для технических служб с низкой (2,4 Кбит/с) скоростью.

собый интерес к возможности передачи информации по силовой сети возник с развитием Интернета. Чтобы предоставить доступ в Интернет широким слоям населения, необходимо было связать точки присутствия провайдера с домами или офисами клиентов, большинство из которых не имеют канала для высокоскоростного доступа, аналогичного тому, которым обладает провайдер. Причем для того, чтобы проложить такой кабель, каждому клиенту придется выложить немалую сумму. И если корпоративные пользователи часто могут позволить себе подключение по дорогостоящей технологии, то для домашних, которых значительно больше, это абсолютно неприемлемо. Таким образом, перед инженерами была поставлена задача разработать доступную по цене технологию последней мили, которая надежно связала бы провайдера и его клиентов.

Десятки компаний работали в этом направлении, вложив сотни миллионов долларов в различные технологии, начиная с хDSL, коаксиальных телевизионных кабелей, беспроводного радиодоступа и заканчивая передачей данных через спутник.

Многие технологии основывались на том, чтобы использовать уже имеющуюся инфраструктуру - телефонные линии, сети кабельного телевидения и т.п. - для осуществления доступа в Интернет. Однако очевидно, что с точки зрения распространенности и доступности готовой инфраструктуры с силовой сетью не может сравниться никакая другая. Силовые розетки есть в каждом доме даже в самых отдаленных уголках земного шара.

В 90-х годах проводился целый ряд исследовательских работ по высокоскоростной передаче данных по силовой сети, в ходе которых были выявлены некоторые проблемы: электропроводка характеризуется высоким уровнем шумов, быстрым затуханием высокочастотного сигнала, изменением коммуникационных параметров линии в зависимости от текущей нагрузки. Со временем эти трудности удалось преодолеть. В процессе разработки более совершенных способов модуляции сигналов были созданы технологии высокоскоростного выхода в Интернет при помощи электросети.

Пионером в этой области была британская компания Nor.Web, которая совместно с компанией United Utilities разработала технологию Digital Power Line (DPL), позволяющую передавать голос и пакеты данных через простые электрические сети 120/220 В.

В 1997 году был проведен первый эксперимент, а уже через два года технология прошла испытания в Манчестере и Милане. Однако результаты были неудачными, и Nor.Web прекратила исследования. Неоднородность среды передачи и отсутствие элементной базы и единого стандарта привели к тому, что технология Digital Powerline не получила коммерческого применения.

Вслед за DPL появились решения немецких компаний: Bewag запатентовала телекоммуникационную разработку, позволяющую передавать данные по электропроводам, Veba достигла увеличения скорости передачи данных по силовым сетям, но наибольших успехов в технологии передачи данных по электросетям добилась израильская компания Main.net (www.mainnet-plc.com). Ее технология PLC (Powerline Communications) получила широкое распространение.

PLC-оборудование обеспечивает передачу как данных, так и голоса (VoIP). Скорость передачи данных может составлять от 2 до 10 Мбит/c.

В основе технологии PLC лежит частотное разделение сигнала, при котором высокоскоростной поток данных разбивается на несколько низкоскоростных потоков, передающихся на отдельных поднесущих частотах с последующим их объединением в один сигнал.

Главным ценовым конкурентом «электрического» доступа является асимметричная цифровая абонентская линия (Asymmetrical Digital Subscriber Lines, ADSL). При этом следует отметить, что несимметричные каналы не подходят для решения всех задач, например они не годятся для динамичных онлайновых игр, где обратный трафик достаточно велик.

PLC-службы, такие как высокоскоростной доступ в Интернет (high speed Internet), сегодня доступны в целом ряде европейских стран. Например, в Германии служба предлагается в нескольких городах под разными торговыми марками: Vype (www.vype.de); Piper-Net (www.piper-net.de) и PowerKom (www.drewag.de); в Австрии под торговой маркой Speed-Web (www.linzag.net); в Швеции услуга предоставляется под брендом ENkom (www.enkom.nu); в Нидерландах под именем Digistroom (www.digistroom.nl); в Шотландии — Broadband (www.hydro.co.uk/broadband).

Перспективная технология заинтересовала таких мощных игроков телекоммуникационного рынка, как Motorola, Cisco Systems, Intel, Hewlett-Packard, Panasonic, Sharp и др. Например, Motorola совместно с Phonex Broadband и Sonicblue успешно опробовала метод передачи по электросети музыкальных файлов. Для того чтобы избежать негативных факторов конкуренции, несколько крупных телекоммуникационных компаний объединились в альянс (он получил название HomePlug Alliance) с целью совместного проведения научных исследований и практических испытаний, а также принятия единого стандарта на передачу данных по системам электропитания.

Привлекательность PLC-технологии для энергетических компаний

Для энергетических компаний PLC-технология выгодна по следующим причинам:

Открывает путь на новые рынки, так как превращает линии электропередачи в сеть передачи данных;

Позволяет предлагать клиентам такие востребованные услуги, как высокоскоростной доступ в Интернет, телефонию и др.;

Не требует частотного ресурса и соответствующих лицензий;

Недорогое оборудование обеспечивает низкие начальные капиталовложения и возможность поэтапного наращивания мощностей;

Позволяет предложить новые виды услуг без существенных капиталовложений, поскольку электросетевое оборудование уже имеет большое количество пользователей, развитую инфраструктуру для построения системы поддержки клиентов, ремонтные службы и т.п.;

Предоставляет энергетическим и муниципальным компаниям возможность постоянного дистанционного мониторинга всех параметров потребления электроэнергии, воды, газа, тепла и транзакций по оплате любых видов услуг.

Высокоскоростной доступ в Интернет

Стоимость реализации технологии последней мили складывается из стоимости линейной инфраструктуры (примерно 60-80% от общей стоимости), стоимости оборудования (20-30%) и стоимости проектирования, подготовительных инжиниринговых работ и т.п. (10-20%). Широкая распространенность электрических сетей 0,2-0,4 кВ, отсутствие необходимости в дорогостоящих работах по проводке траншей и пробивке стен для прокладки кабелей стимулируют повышенный интерес к ним как к среде передачи данных. В качестве примера высокоскоростного подключения к Интернету можно привести технологию швейцарской компании Ascom, являющейся лидером в производстве систем и сетей связи на основе PLC-технологии. Компания предлагает комплексное решение, при котором питающие здание электрические кабели служат «последней милей» для передачи данных, а электропроводка внутри здания выступает в роли «последнего дюйма». Наружная (Outdoor; рис. 2) и внутренняя (Indoor; рис. 3) системы позволяют использовать одну и ту же передающую среду и различные несущие частоты. Для передачи данных по питающим здание фидерам применяются низкие частоты, а внутри зданий - высокие.

Для наружных приложений компания Ascom предлагает использовать три несущие со значением средних частот 2,4; 4,8 и 8,4 МГц. В зависимости от расстояния передачи каждая из несущих передает данные со скоростью от 0,75 до 1,5 Мбит/с. При небольшом расстоянии между промежуточной приемопередающей точкой (например, трансформаторной подстанцией) и зданием применяются все три несущие. При этом достигается скорость передачи до 4,5 Мбит/с. При минимальной скорости передачи без репитеров может быть покрыто расстояние 200-300 м. Для наивысших значений скоростей передачи расстояние сокращается примерно вдвое.

Концепция репитеров позволяет PLC вдвое расширить область действия наружных и внутренних приложений. Репитер принимает трафик данных от мастер-устройства и передает его на оконечные устройства, которых оно не может достичь напрямую.

Еженедельно компания Ascom выпускает около 6 тыс. PLC-адаптеров и 2 тыс. сетевых устройств.

В качестве примера реализации проектов Ascom Powerline можно привести проект одного из ведущих поставщиков электроэнергии в Германии - компании RWE, предоставляющей доступ через сеть RWE PowerNet по более низкой цене, чем телевизионные и кабельные компании. В настоящее время на базе оборудования Ascom Powerline Communications AG уже реализован ряд проектов в странах Восточной Европы, готовятся пилотные проекты по внедрению PLC на Украине и в России.

PLC-технологии для домашних сетей

Возможность передачи информации по электросети позволяет решить проблему не только последней мили, но и «последнего дюйма». Дело в том, что количество проводов, которые используются для соединения домашних ПК и других предметов домашней электроники, уже возросло непомерно: в 150-метровой квартире прокладывается до 3 км различных кабелей. А электрическая сеть как раз является идеальной средой для передачи управляющих сигналов между бытовыми приборами, работающими в сети 110/220 В. PLC-технологии для домашних сетей позволяют эффективно реализовать концепцию интеллектуального дома, предоставив целый ряд услуг по дистанционному мониторингу, охране жилища, управлению его режимами, ресурсами и пр.

В частности, известная компания LG предлагает связывание своей бытовой электроники посредством силовой сети (рис. 5):

Интернет-холодильник осуществляет функции контроля и мониторинга цифровой электроники, подключенной к сети, и предоставляет доступ в Интернет;

Интернет-стиральная машина управляется по сети, позволяет загружать программы стирки из Интернета;

Интернет-микроволновая печь позволяет скачать рецепт блюда из Интернета, осуществлять удаленный Интернет-мониторинг;

Интернет-кондиционер управляется через Интернет.

Ожидается, что PLC-технология сможет дать новый импульс развитию средств передачи данных по линиям электропитания и сделает возможным прямой доступ в Глобальную сеть практически из любой точки земного шара по минимальной стоимости. Пока технология не получила широкого распространения, однако в ближайшем будущем можно ожидать, что она серьезно потеснит альтернативные технологии и приведет к существенным изменениям на рынке провайдерских услуг: к снижению расценок на доступ в Сеть, включая цены на подключение по коммутируемой телефонной линии и по выделенным линиям.

Если PLC-технология получит распространение, она сможет значительно изменить расстановку сил на рынке предоставления услуг Интернет-доступа и будет способствовать разработке новых принципов проектирования силовых электрических сетей - с учетом как энергетических, так и коммуникационных требований.

Передача информации по сетям электропитания с помощью ИС компании Semtech (2015)

Номенклатура изделий, выпускаемых Semtech Corporation, включает в себя множество ИС физического уровня, позволяющих организовать передачу информации как по проводам, так и по радиоканалу (оптические приёмопередатчики, драйверы линий, радиотрансиверы и т.д.). Поглощение в начале 2015 года компании EnVerv, лидера в разработке PLC (Power Line Communications) модемов, позволило расширить линейку коммуникационной продукции Semtech за счет устройств, обеспечивающих обмен данными по типовым линиям электропередач. В рамках данной статьи остановимся на принципах функционирования и построения сетей на базе однокристальных PLC микросхем компании Semtech, рассмотрим особенности отдельных представителей нового семейства и приведем примеры практической реализации устройств на их основе.

ВВЕДЕНИЕ
Передача информации и организация питания по одним и тем же проводам достаточно эффективно используется в различных применениях. К примеру, можно вспомнить стандартные телефонные линии или Ethernet сети, выполняющие подключение удаленных узлов с помощью технологии , при которой питание осуществляется по отдельным жилам кабеля связи. Однако у большей части таких решений есть очевидный недостаток: все они в общем случае требуют проведения монтажных работ, затраты на которые зачастую составляют большую часть стоимости наладки сети. Более того, существует ряд ситуаций, при которых прокладка новых кабелей крайне нежелательна или даже невозможна – примером таких ситуаций являются недавно законченный ремонт, после которого неожиданно выясняется, что необходимо прокладывать дополнительные провода для компьютерных сетей либо арендуемый офис с непредусмотренным каналом выхода в интернет. В этих случаях почти всегда можно ограничиться существующей инфраструктурой, а именно, воспользоваться уже имеющейся практически в каждом помещении электропроводкой для организации сравнительно быстрого и надежного канала связи, разветвленного по всему зданию.


Телекоммуникационная технология PLC, базирующаяся на использовании силовых электросетей для обмена данными путём наложения полезного сигнала поверх стандартного переменного тока частотой 50 или 60 Гц, отличается простотой реализации и оперативностью монтажа устройств на её основе. Первые системы передачи данных по электрическим сетям появились ещё в 1930-х годах, в основном они использовались для сигнализации в энергосистемах и на железных дорогах, характеризуясь при этом очень низкой пропускной способностью . В конце 1990-х годов ряд компаний реализовал первые большие проекты в этой области, однако в процессе эксплуатации были выявлены серьезные проблемы, основной из которых была слабая помехозащищенность. Работа энергосберегающих ламп, импульсных блоков питания, зарядных устройств, тиристорных диммеров и бытовых электроприборов, а также электродвигателей и сварочного оборудования, особенно включенных в непосредственной близости от PLC-модема, вызывала в незащищенных от высокочастотных излучений проводах импульсные помехи, которые приводили к резкому снижению достоверности передачи данных. Также на стабильность и скорость прохождения сигнала негативное влияние оказывала неоднородность линий связи, в частности, качество и изношенность электрических сетей, наличие стыков из материалов с разной электропроводностью (например, меди и алюминия), наличие скруток и т.д. В результате общее снижение номинальной скорости передачи данных составляло от 5 до 50 %. Кроме того, в помещениях, где работали PLC-устройства, в некоторых случаях наблюдалось нарушение радиоприёма на расстоянии порядка 3-5 метров от модема, особенно на средних и коротких волнах. Это происходило из-за того, что провода электросети начинали действовать как антенны радиоретрансляторов, излучая, по сути, весь трафик в эфир.
Технология передачи данных по электросетям получила должное коммерческое применение только в начале текущего столетия, а её внедрение и широкое распространение обусловлено появлением соответствующей элементной базы, в т.ч. высокопроизводительных микроконтроллеров и быстрых DSP процессоров (цифровых сигнальных процессоров), позволяющих реализовать сложные методы модуляции сигнала и современные алгоритмы шифрования данных. Это обеспечило не только высокий уровень достоверности при передаче информации, но и её защиту от несанкционированного доступа. Также важное значение имело решение проблемы стандартизации различных аспектов технологии. В настоящее время основными организациями и сообществами, регламентирующими требования к PLC-устройствам, являются IEEE, ETSI, CENELEC, OPERA, UPA и HomePlug Powerline Alliance. Последняя из них является международным альянсом, объединяющим около 80 известных на рынке телекоммуникаций компаний, среди которых Siemens, Motorola, Samsung и Philips. Деятельность альянса, организованного в 2000 году, направлена на проведения научных исследований и практических испытаний совместимости устройств различных изготовителей, использующих данную технологию, а также поддержку и продвижение единого стандарта под названием HomePlug.
Все существующие PLC-системы принято разделять на широкополосные (BPL – Broadband over Power Lines) и узкополосные (NPL – Narrowband over Power Lines). Спектр решаемых с их помощью задач очень широк, а выбор необходимого метода основывается на характеристиках и объёме передаваемой информации. Широкополосные устройства (со скоростью от 1 до 200 Мбит/c) ориентированы на системы доступа к интернету, на создание домашних компьютерных сетей, а также на приложения, требующие высокоскоростного обмена данными: потоковое видео, системы видеоконференцсвязи, цифровой телефонии и т.д. Наибольший интерес для разработчиков аппаратуры представляют узкополосные PLC-модемы в связи с их относительной дешевизной и улучшенными характеристиками, позволяющими работать не только в обычных сетях, но и в сетях с повышенным уровнем помех. Микросхемы и модули для узкополосных модемов (с пропускной способностью канала от 0,1 до 100 Кбит/с) широко применяются в составе различных изделий бытового и промышленного назначения, при создании распределенных систем автоматизированного контроля и управления в цехах и системах жизнеобеспечения зданий (лифтах, устройствах кондиционирования и вентиляции), средств учета потребления электроэнергии, воды, газа, тепла, приборов охранной и пожарной сигнализации.

ОСОБЕННОСТИ ТЕХНОЛОГИИ PLC
Основой PLC-технологии является использование частотного разделения сигнала, при котором высокоскоростной поток данных разбивается на несколько относительно низкоскоростных, каждый из которых передается на отдельной поднесущей частоте с последующим их объединением в результирующий сигнал (рис. 1).


При использовании обычной модуляции с частотным разделением (FDM – Frequency Division Multiplexing) доступный спектр расходуется неэффективно. Связано это с наличием защитных интервалов между отдельными поднесущими, необходимых для предотвращения взаимного влияния сигналов (рис. 2а). Поэтому в PLC устройствах применяется ортогональное частотно-разделенное мультиплексирование (OFDM – Orthogonal Frequency Division Multiplexing), при котором центры поднесущих частот размещаются так, что пик каждого последующего сигнала совпадал с нулевым значением предыдущего. Как видно на рис. 2б, доступная полоса частот в этом случае расходуется более рационально.


Перед объединением в один сигнал все поднесущие частоты подвергаются фазовой модуляции – каждая своей последовательностью бит. После этого они проходят через блок формирования, где собираются в единый информационный пакет, называемый еще OFDM-символом. На рисунке 3 приведен пример относительной квадратурной фазовой манипуляции (DQPSK - Differential Quadrature Phase Shift Keying) для каждой из четырех поднесущих частот в диапазоне 4,5-5,1 МГц. Реально в технологии PLC передача ведется с использованием 1536 поднесущих частот с выбором 84 наилучших на диапазоне от 2 до 32 МГц в зависимости от текущего состояния линии и наличия помех. Данный способ придает PLC технологии гибкость при использовании в различных условиях. Например, как уже было сказано выше, работающее PLC-устройство способно "глушить" радиоприём на определенных частотах, эта проблема хорошо известна радиолюбителям. Ещё одним примером является случай, когда некое приложение уже использует часть диапазона. Технически устранение нежелательного взаимного влияния реализуется путем использования настроек, так называемых Signal Mode и Power Mask на устройствах, в которых предусмотрена соответствующая возможность. Signal Mode – программный метод определения рабочего диапазона частот, а Power Mask – программный метод ограничения спектра используемых частот. За счёт этого PLC-устройства могут спокойно сосуществовать в одной физической среде и не зашумлять диапазоны частот, используемые для радиосвязи.


При передаче сигналов по бытовой электросети могут возникать значительные затухания передаваемого сигнала на определенных частотах, что может привести к потере и искажению данных. Для решения вопроса адаптации к физической среде передачи предусмотрен способ динамического включения и выключение передачи сигнала, позволяющий выполнить обнаружение и устранения ошибок и конфликтов. Суть данного метода заключается в постоянном мониторинге канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания. В случае обнаружения данного факта, использование проблемного диапазона на время прекращается до восстановления приемлемого значения затухания, а данные передаются на других частотах (рис. 4).


Другой существенной сложностью при передаче данных по бытовой электросети, теперь уже для самих устройств PLC, являются импульсные помехи, источниками которых могут быть различные зарядные устройства, галогеновые лампы, включение или выключение различных электроприборов (рис. 5). Сложность ситуации заключается в том, что, используя вышеописанный метод, PLC-модем не успевает адаптироваться к быстроменяющимся условиям, ведь их длительность может не превышать одной микросекунды, в результате часть битов может быть утеряна. Для решения этой проблемы используется двухступенчатое (каскадное) помехоустойчивое кодирование битовых потоков перед тем, как они будут промодулированы и поступят в канал передачи данных. Его суть состоит в добавлении в исходный информационный поток по определенным алгоритмам избыточных ("защитных") битов, которые используются декодером на приемной стороне для обнаружения и исправления ошибок. Каскадирование блочного кода Рида-Соломона и простого сверточного кода, декодируемого по алгоритму Витерби, позволяет исправлять не только одиночные ошибки, но и пакеты ошибок, что значительно увеличивает целостность передаваемых данных. Кроме того, помехоустойчивое кодирование увеличивает безопасность передаваемой информации с точки зрения защиты от несанкционированного доступа.


Так как в качестве среды передачи данных выбрана разветвленная сеть бытового электропитания, то в один момент времени передачу могут начать сразу несколько подключенных устройств. В такой ситуации для разрешения конфликтов столкновения траффика применяется регулирующий механизм – протокол доступа к среде CSMA/CA. Разрешение коллизий происходит на основе того или иного приоритета, задаваемого в специальных полях приоритезации пакетов данных.

ИС SEMTECH ДЛЯ РЕАЛИЗАЦИИ PLC ТЕХНОЛОГИИ
PLC продукция компании Semtech предназначена для эксплуатации в типовых линиях электроснабжения с низким или средним рабочим напряжением . Любой модем, работающий с аналоговой физической линией, должен иметь функциональные узлы, необходимые для обработки аналоговых данных, преобразования их в цифровую форму и, конечно, для обработки цифровых данных. На стороне передачи модем также должен производить кодирование цифровых данных в соответствии с заданным алгоритмом, преобразовывать их в аналоговые и посылать в линию.
Все эти действия выполняют микросхемы серии EV8ххх. Узкополосные микросхемы, представляющие собой “системы на кристалле”, отличаются высокой степенью интеграции и содержат все необходимые структурные блоки для реализации физического, MAC и других уровней протокола (6LoWPAN и IEC). Поддерживают несколько типов модуляции, на практике наиболее часто применяется OFDM для организации устойчивого и помехозащищенного канала связи. Однокристальные ИС, прошедшие тестирование функциональной совместимости в HomePlug Alliance Netricity, отличаются универсальностью применения, на их основе проектируются как оконечные узлы, так и координаторы сети. Спецификация Netricity разработана для сетевых коммуникаций по линиям электросети большой дальности и предназначена для внедомовой инфраструктуры, интеллектуальных сетей распределения электроэнергии и управления производственными процессами. Технология может быть использована как в плотных городских, так и в сельских электросетях с использованием частот ниже 500 кГц. Она также включает уровень доступа на основе IEEE 802.15.4 (MAC), являющийся ключевым для разработки гибридных проводных/беспроводных сетей. Основные технические характеристики PLC микросхем компании Semtech представлены в таблице 1.


ИС серии EV8ххх обладают программируемыми диапазонами частот от 10 до 490 кГц, покрывая CENELEC A (10 – 95 кГц), CENELEC B (95 – 120 кГц), CENELEC C (120 – 140 кГц), FCC (10 – 490 кГц) и ARIB (10 – 490 кГц) полосы без изменений в конструкции устройства . Путем удаленной загрузки соответствующего встроенного программного обеспечения по линии электросети они могут быть настроены для работы в режимах ITU-T G.9903 (G3-PLC), ITU G.9902, ITU-T G.9904 (PRIME), IEEE P1901.2 и IEC-61334 (S-FSK). Кроме того они поддерживают фирменный высокопроизводительный режим 4GPLC. Конструктивно микросхемы семейства изготавливаются в низкопрофильных корпусах для поверхностного монтажа, предназначенных для эксплуатации в диапазоне рабочих температур от -40 до +85°C . Упрощенная структура с изображением основных функциональных узлов приведена на рис 6, здесь можно выделить следующие блоки:
Блок AFE (Analog Front-End) представляет собой набор аналоговых компонентов, обеспечивающих изоляцию при помощи трансформатора с разделительным конденсатором, фильтрацию и усиление входного сигнала, и формирование заданных уровней выходного передаваемого сигнала путем использования драйвера линии на ОУ;
PHY – это блок, предназначенный для сопряжения цифровой части микросхемы с аналоговой линией;
32-битный RISC микроконтроллер обеспечивает внутрисхемную реализацию MAC-уровня, производит обработку данных, формирование пакета, кодирование данных по симметричному алгоритму блочного шифрования AES и т.д., а также решает прикладные задачи;
Периферийные блоки, сопрягающие встроенный микропроцессор с внешними микросхемами – памятью EEPROM, АЦП с высоким разрешением и хост-контроллером. Для связи применяется аппаратная реализация широко распространенных интерфейсов SPI, I2C и UART;
Интегрированная оперативная и флэш-память. Размер встроенной памяти программ варьируется в пределах от 1 до 2 Мб, оперативной - от 256 кбайт у EV8100 до 384 кбайт у остальных, по запросу к производителю возможны иные варианты;
Блок управления тактированием;
Подсистема питания, обеспечивающая все необходимые для отдельных узлов напряжения. Как правило, применяется источник, работающий от той же сети переменного тока, что и используется для передачи данных.
Отдельно стоит отметить ИС EV8100, которая, помимо типовых узлов, содержит встроенный контроллер 6х33 сегментного LCD дисплея и драйвер сенсорной клавиатуры.

ОБЛАСТИ ПРИМЕНЕНИЯ ИС СЕМЕЙСТВА EV8XXX
PLC микросхемы компании Semtech ориентированы прежде всего на использование в системах автоматизации, дистанционного управления и контроля удаленными объектами, наиболее популярные сферы их применения:
Сети автоматизации зданий (AMI);
Системы управления посадочными огнями в аэропортах;
;
Домашние локальные сети;
Интеллектуальное оборудование (“умные вещи”), в т.ч. бытовая электроника;
Системы контроля и управления на солнечных электростанциях;
Сети уличного освещения;
Оборудование связи с подстанциями;
Системы управления транспортными потоками.
Среди всего вышеперечисленного основное направление - это сети AMI (Инфраструктура интеллектуального учета), объединяющие «умные счетчики», концентраторы данных, средства управления энергопотреблением, дисплеи и другие компоненты систем автоматизации зданий (рис. 7).


Связь по силовым линиям является основным элементом автоматизированных систем контроля и учета энергоносителей, применяемых коммунальными службами. Основные преимущества этой технологии: возможность автоматически получать информацию от жилых и промышленных помещений, расположенных в удаленных районах с низкой плотностью населения и низким качеством инфраструктуры, большой срок службы, возможность наращивания и низкие затраты. Принцип работы системы довольно прост. Электричество от электростанции передается по высоковольтному кабелю к подстанции. Здесь происходит понижение напряжения и распределение на большое количество низковольтных трансформаторных подстанций, понижающих напряжение до бытового. Обычно к одному трансформатору подсоединено от 500 до 1000 конечных потребителей. Таким образом, можно предложить следующий вариант построения PLC систем для данных целей: концентратор, действующий как центральный узел, базируется на низковольтных подстанциях и регулярно (например, раз в час) собирает результаты измерений со счетчиков (это могут быть не только счетчики электроэнергии, но и воды, тепла, газа). Далее информация пересылается на сервер для дальнейшей обработки, например по каналу GSM . Такой тип систем не ограничен только получением информации со счетчиков и может выполнять другие функции.
Для практической реализации данной системы компания Semtech предлагает стартовый набор разработчика, включающий как готовые решения на основе микросхем EV8000, EV8100 и EV8200 для максимально быстрой организации передачи данных по PLC сети, так и отладочные средства для оценки возможностей системы (таблица 2).


Последние представляют собой модули для оконечных узлов (счетчиков) и концентраторов, в комплект поставки которых входит все необходимое, включая рекомендации по применению, а также ПО для настройки параметров отдельных узлов и мониторинга качества связи в проектируемой сети. Прилагаемый графический интерфейс пользователя позволяет запрограммировать диапазон рабочих частот, тип модуляции, скорость передачи, уровень выходной мощности и т.д., а также наглядно отследить коэффициенты ошибок PER и BER в пакетах принимаемых данных.
Отладочные комплекты EVM8K-01, EVM8K-02 и EVM8K-03 могут выступать как в качестве удаленных измерительных узлов, так и в качестве концентраторов, обеспечивающих сбор данных. Модули предназначены для эксплуатации в одно- и трехфазных сетях, запитываются от встроенного источника переменного тока с напряжением 80-280 В (EVM8K-01 и EVM8K-02) либо от постоянного со стандартным напряжением 12 В (EVM8K-01 и EVM8K-03). Связь с хост-контроллером осуществляется посредством интерфейсов RS-232 или USB. Комплект EVM8K-13 представляет собой концентратор сети, объединяющий на одной плате PLC модем на базе ИС EV8000 с 32-битным RISC микроконтроллером, необходимым для выполнения пользовательского приложения. Комплект способен обслуживать до 500 оконечных узлов (до 2000 опционально), из отличительных особенностей можно отметить наличие “на борту” 3G/EDGE/GPRS модема, GPS модуля и 8 Гб SD карты. Помимо беспроводной передачи данных на сервер можно также воспользоваться интерфейсами RS-232, USB или Ethernet. Внешний вид отладочных комплектов показан на рис. 8.

ЗАКЛЮЧЕНИЕ
Широкое распространение низковольтных электрических сетей 0,22-0,38 кВ и отсутствие необходимости проведения затратных монтажных работ для прокладки кабелей стимулируют повышенный интерес к электрическим сетям как к среде передачи данных. Текущее развитие PLC технологии во многом связано с появлением общепринятых регламентирующих стандартов и совершенствованием соответствующей элементной базы. PLC модемы компании Semtech, отличающиеся высокой степенью интеграции, обеспечивают получение устойчивого и помехозащищенного канала связи при его достаточно высокой пропускной способности.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1. Охрименко В. PLC-технологии. // Электронные компоненты. 2009. №10. с. 58-62.
2. Официальный сайт компании Semtech. www.semtech.com
3. Product brochure. EV8000: Single-chip multimode PLC modem.
4. Product brochure. EV8010: Single-chip standards-based PLC modem.
5. Product brochure. EV8020: Single-chip standards-based PLC modem.
6. Product brochure. EV8100: Split-meter display SoC with integrated PLC.
7. Product brief. Power line communication products.